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ABSTRACT
Motivation: The immune response to bacterial infection represents
a complex network of dynamic gene and protein interactions. We
present an optimized reverse engineering strategy aimed at a recon-
struction of this kind of interaction networks. The proposed approach
is based on both microarray data and available biological knowledge.
Results: The main kinetics of the immune response were identified by
fuzzy clustering of gene expression profiles (time series). The num-
ber of clusters was optimized using various evaluation criteria. For
each cluster a representative gene with a high fuzzy-membership
was chosen in accordance with available physiological knowledge.
Then hypothetical network structures were identified by seeking sys-
tems of ordinary differential equations, whose simulated kinetics could
fit the gene expression profiles of the cluster-representative genes.
For the construction of hypothetical network structures singular value
decomposition (SVD) based methods and a newly introduced heur-
istic Network Generation Method here were compared. It turned out
that the proposed novel method could find sparser networks and gave
better fits to the experimental data.
Contact: Reinhard.Guthke@hki-jena.de

1 INTRODUCTION
Discovering and understanding the complex molecular interactions
that make up living organisms is one of the most interesting and chal-
lenging problems of modern molecular biology, systems biology and
bioinformatics. A commonly accepted top-down approach to unravel
the structure of these systems is to reverse engineer gene regulat-
ory networks from experimental time series data (D’haeseleeret al.,
2000; de Jong, 2002; Csete and Doyle, 2002). Usually, the measured
data record spontaneously running processes, like cell division and
cell differentiation, or reactions to external stimuli, like responses
to bacterial infection (Boldricket al., 2002). The observed changes
in gene expression over time are either due to direct effects of the
stimulus on specific genes or result from secondary gene–gene inter-
actions. The aim of reverse engineering is then to detect the most
likely interactions by identifying sets of relevant model parameters
that are required to obtain an appropriate correspondence between
measured data and model output. Often the amount and the quality
of the experimental data at hand is insufficient for an unequivocal
assignment of the model parameters. A widely used approach to
resolve this indeterminacy is to favor simple mechanisms (Occam’s
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razor) by requiring the set of model parameters to be minimal. For
genetic networks this assumption is further justified by the observa-
tion that genetic networks are sparsely connected (Yeunget al., 2002
and references therein).

In standard gene expression profiling there are many more vari-
ables (N genes) than measurements (M time points). As a con-
sequence, the gene interaction matrix (N × N entries) of linear
models cannot be uniquely determined by the measurement mat-
rix (N ×M entries). Several approaches have been proposed to cope
with this problem:

(1) Interpolation and subsequent resampling of the experimental
time courses (e.g. D’haeseleeret al., 1999) being able to gen-
erate almost any number of semi-empirical measurement data
(enlargement ofM).

(2) Singular value decomposition (SVD) based methods (Holter
et al., 2001; Yeunget al., 2002) that calculate a solution to
the interaction matrix by imposing additional mathematical
constraints.

(3) Methods for finding sparse interaction matrices by combinat-
orial search strategies (Chenet al., 1999; van Somerenet al.,
2001).

(4) Clustering of gene expression time series (reduction ofN )
and use of cluster-representatives for subsequent modeling
(D’haeseleeret al., 2000; Wahde and Hertz, 2000; Mjolsness
et al., 2000).

The first approach has major drawbacks since it cements microarray
measurement errors and introduces some arbitrariness through the
choice of interpolation method especially for undersampled data. In
the present paper, clustering and a combinatorial search strategy were
chosen as the primary approaches to reduce the indeterminacy of the
interaction matrix.

Clustering as a means for reducing the number of variables can
be justified by the presence of regulatory motifs (D’haeseleeret al.,
2000). From a system theoretic point of view coarse graining of
expression profiles means eliminating redundant information (in
terms of indistinguish-ability). However, it has to be done with the
highest possible accuracy in order to preserve and extract the existing
data structure.

We introduce a novel approach of data-driven reverse engineering
that generates probable gene regulation network models based
on a combination of optimized clustering and optimized network
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reconstruction. While the optimization of clustering concentrates on
effective cost function minimization and robust cluster validation, the
optimization of network reconstruction is directed to a simultaneous
minimization of both the number of interaction parameters and the
model error. Both steps, optimized clustering and subsequent optim-
ized network generation, are compared with alternative methods.

The newly proposed approach is demonstrated using data on the
immune response of human blood cells to bacterial infection recorded
by Boldrick et al. (2002). It is compared to established SVD based
methods (Yeunget al., 2002).

Summarizing, the present reverse engineering approach consists
of four steps: (1) data pre-processing, (2) optimized fuzzy clustering
and cluster validation, (3) selection of cluster-representative genes
by the degree of cluster membership and available biological know-
ledge, and (4) generation of probable dynamic network models by
fitting the simulated kinetics to the experimental expression profiles
at hand with a minimum number of model parameters.

2 METHODS

2.1 Data pre-processing
Gene expression data of peripheral blood mononuclear cells (PBMCs)
infected byEscherichia coli were obtained from the internet (http://genome-
www.stanford.edu/ hostresponse/; Boldricket al., 2002). The data represent
logarithmized ratios (log-ratios) of the expression intensities of 18 432 genes
or ESTs at five time pointst(t = 0.0, 0.5, 1.0, 2.0, 4.0 h) before and after
an infection with heat-killed pathogenicE.coli. The log-ratios att = 0
(unperturbed state) were subtracted from the respective time series, i.e.
only differences with respect to the pre-infection state were considered. The
resulting log-ratios range from−10.4 to 8.7 (log2-values). A total of 1336
genes was selected by requiring an upregulation or downregulation of at least
a factor 8(=23). For cluster analysis the time profiles were scaled by their
respective absolute temporal extreme values to focus on qualitative behavior.
Missing data were imputed by using a method based on ak-nearest neigh-
bor algorithm (Troyanskayaet al., 2001). The value ofk, finally selected
from a set of tested values, led to robust clusters and the smallest differences
with respect to additionally removed and re-imputed values. For modeling
the unscaled log-ratios only data with no missing values were used.

2.2 Clustering and cluster validation
The clustering results subsequently used for network modeling were obtained
from the fuzzy C-means (FCM) algorithm (Bezdek and Pal, 1992). FCM was
selected as the method of choice after a pre-investigation that comprised
several clustering approaches (see Discussion section). The number of
clusters was estimated by the vote of 42 cluster validity indices: (1) 18
generalizations of Dunn’s index (Bezdek and Pal, 1998), (2) the same 18
generalizations applied to the Davis–Bouldin index (Bolshakova and Azuaje,
2003), (3) the mean cluster silhouette width (Kaufman and Rousseeuw, 1990)
and (4) indices proposed by Goutteet al. (1999); Ray and Turi (1999); Fadili
et al. (2001); Kim et al. (2001) and Pakhiraet al. (2004). These indices
capture different aspects of a clustering structure.

The FCM algorithm converges to a local optimum. The obtained result
is likely to be random because the initial partition can only be chosen heur-
istically or randomly (Peñaet al., 1999). Therefore, the estimated number
of clusters may also be random, and no algorithmic output quantifies the
significance of this estimate. Mölleret al. (2002) have presented an approach
that copes with both problems. An improved version of this approach was
used here. Commonly, a validity index vector,V = (v2, . . . ,vC , . . . ,vCmax),
is calculated based on a set,� = {πC}, of locally optimal candidate partitions,
πC , each with a different number of clusters,C. In the present study, however,
the number of clusters was estimated from an array of convergent index
curves,V = {V1, . . . ,VS}, where each curveVi was calculated from an

independent set,�i . The convergence of the curvesVi , that allows for a
unique estimation in the number of clusters, was achieved step by step: each
partition πC,i was improved duringT runs of the FCM algorithm using
random run initialization, and retaining the best result, i.e. the partition
πC,i [Tbest],Tbest ∈ {1, . . . ,T }, with the smallest value of the FCM objective
function.T is a measure of the optimization effort, whereby, here, multiple
local optimization is used to approach the global minimum, and one run of
the FCM algorithm is the scale unit of the optimization effort.

2.3 Selection of cluster-representative genes
For each cluster one representative gene was selected. The following selection
criteria were used: The representative gene

• is assigned to one cluster with a high fuzzy membership degree n (MSD),

• is annotated with a known immunological function, and

• is represented by an expression profile with no missing values.

Subsequently, the expression profiles of the selected genes were used for
modeling.

2.4 Dynamic modeling
The dynamics of hypothetic gene regulatory networks was modeled by
systems of linear differential equations. Their general solution is a linear
combination of exponentially damped (stable) or excited (unstable) oscilla-
tions. Apart from its inherent simplicity an advantage of this approach is that
linear algebraic methods can be used to fit its free parameters to experimental
data. The general mathematical form reads

dxi(t)

dt
=

C∑

j=1

wi,j · xj (t) + bi · u(t) (1)

in whichxi(t) is the expression of genei = 1, . . . ,C at timet ,wi,j denotes a
gene–gene interaction matrix andbi represents an external (infection) stim-
ulus response vector.u(t) is the Heaviside step function:u(t < 0) = 0 and
u(t ≥ 0) = 1, i.e. the influence of bacterial infection is taken to be constant
over time (for 4 h). In addition, the system is assumed to be at equilibrium
prior to stimulation, i.e. dxi(t < 0)/dt = xi(t < 0) = 0.

Genetic networks are known to be sparsely connected (Yeunget al., 2002
and references therein). The aim of dynamic modeling and network recon-
struction is thus to find a minimal set of relevant (i.e. non-zero) model
parameters (wi,j andbi ) required to achieve an adequate fit to the expression
data at hand.

2.5 Dynamic modeling using SVD
Substantiating Equation (1) for the measuring time pointst1, . . . , tM results
in a system of linear algebraic equations. The time derivatives have to be
estimated from the experimental data points (presently by linear interpola-
tion). Usually, the number of measurementsM is smaller than the number
of measured genesC rendering the system under-determined [infinite num-
ber of solutions for(W )i,j = wi,j ]. Solving the matrix equation by SVD
(Holter et al., 2001; Yeunget al., 2002) involves selection of the matrixW
whose rows have the smallest Euclidean(L2) norm. In addition, the SVD
matrix decomposition provides a means of finding a solution, for which the
rows ofW have the smallest city block(L1) norm (Yeunget al., 2002). Both
methods (L2- andL1-norm minimization) can be regarded as regularization
techniques aimed at finding a minimal set of non-zero model parameters.

2.6 Dynamic modeling using a search strategy
In this paper, a new Network Generation Method for the estimation of
the interaction matrixW and the stimulus response vectorb according to
Equation (1) is proposed. This modeling approach is characterized by an
explicit optimization of the model structure.

The method developed employs a heuristic search strategy that separ-
ates the structure identification from the parameter identification problem
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by examining and comparing models with different connectivity. For each
screened model structure the following procedure is performed: (1) The model
parameters are fitted to the gene expression data using standard optimization
techniques. (2) The resulting model is simulated to obtain the model output.
(3) The mean square error (mse) between the model output and the data is
determined and is subsequently used to assess the model structure.

Even for small network models it is impractical to consider all possible
model structures. Therefore, the Network Generation Method employs a
strategy that restricts the search space by directing the search towards simple
and plausible model structures and by exploiting prior knowledge concerning
the connectivity between genes. The developed approach significantly sim-
plifies the structure search by decomposing the overall identification problem
into a number ofC separate identification steps, i.e. the submodels for theC

gene expression time series are identified separately.
In general, a search strategy consists of three components: an initial model

structure, a direction of search and a stopping criterion (van Somerenet al.,
2001). The following search strategy is applied:

Initial submodel structure. The submodel estimation starts with a simple
initial submodel that represents a first order lag element. The submodel
of genei possesses two non-zero parameters; the parameterwi,i realizes
the selfregulation effect and the parameterbi describes the influence of the
external stimulus on the expression of genei.

Direction of search. Two directions of search are allowed: forward
selection and backward elimination. The method comprises three phases:

(1) In the first phase, a forward selection of the most likely interactions
is performed. Thus, the model complexity is increased by adding
new gene–gene interactions or stimulus response components. Start-
ing from the initial submodel with two parameters, in the first iteration,
all possible submodel structures with three parameters are examined.
The best solution with respect to the model fit is retained and further
expanded in the next iteration. This so called greedy hill-climbing
proceeding is continued until a stopping criterion is met.

(2) The model growing of the first phase bases on the assumption that the
best intermediate solution is a part of the best final solution. Since this
assumption does not have to be true, unimportant interactions may be
included. Therefore, the second phase realizes a backward elimination
of gene–gene interactions and stimulus response components. In order
to decrease the model complexity all possible solutions that result
from the removal of one interaction are considered. Again, the best
solution is retained and tested for possible further removals until a
stopping criterion is met.

(3) The third phase aims to obtain an improved model fit by adapting the
type of dynamic dependency between the interacting genes. The gen-
eral model structure Equation (1) involves first order dynamics for all
submodels. In order to overcome this limitation, the presented Net-
work Generation Method allows to identify submodels that consist of
R differential equations and that, consequently, represent lag elements
of orderR. The search strategy tests different dynamic orders up to a
pre-defined maximum dynamic orderRmax and selects the best fitting
one. Although, the dynamic behavior of the higher order submodels
included changes significantly, their allowed parameterization is
strongly restricted to transfer functions withR equal poles and no
zeros. Higher order submodels are well suited to identify regulatory
interactions that are characterized by significant time delays. They
preserve the connectivity of the network model and have the form

dxi,1

dt
=

∑

j∈Di

wi,j · xj (t) + wi,i · xi,1(t) + bi · u(t)

dxi,r

dt
= xi,r−1(t) + wi,i · xi,r (t), r = 2, . . . ,R − 1

dxi

dt
= xi,R−1(t) + wi,i · xi(t)

(2)

Here, the genesj with j ∈ Di have been found to significantly influence
the expression of genei.

Stopping criterion. In the forward selection mode, interactions are added
if the following conditions are met: (1) The increased model complexity
leads to a considerably improved model fit. (2) The number of parameters
of the expanded submodel is smaller than the number of data points in the
corresponding time series. (3) The number of interactions of the expanded
submodel stays below a pre-defined limit. (4) In order to avoid overfitting,
the mse of the submodel to be expanded is still larger than a pre-defined
maximum allowed submodel errorEmax.

In the backward elimination mode, interactions are removed if the fol-
lowing conditions are fulfilled: (1) The decreased model complexity only
leads to a marginally worsened model fit. (2) The sparser model structure
remains biologically plausible. Submodel structures with only one non-zero
parameterwi,i (the self-regulation parameter) are meaningless with respect
to interactions and are generally excluded by the applied search strategy.

Model parameter identification for a given submodel structure is a
repeatedly executed operation. In this approach, the parameter identification
is performed by a constrained nonlinear optimization algorithm that min-
imizes the mean square error between the model fit and the pre-processed
expression data. The self-regulation parameters,wi,i , are constrained by the
conditionwi,i < 0, i.e. the generated submodels are locally stable. Suitable
initial parameters for the iterative non-linear optimization are obtained using
a linear optimization method. The required time derivatives are calculated
based on Hermite interpolation between the data points. These time deriv-
atives are exclusively used in order to find initial parameter values for the
iterative nonlinear optimization procedure.

3 RESULTS

3.1 Clustering and cluster validation
Figure 1 shows how the clustering and cluster-validation procedure
provided guidance for the visual determination of the number of
clusters. According to Section 2.2, each panel of Figure 1 presents
the array of validity index curves,V = {V1, . . . ,VS}, afterT runs of
clustering. AfterT = 5 runs, the validity index curves exhibited ran-
dom courses. At this stage partitions were obtained that contained a
redundant cluster, and one of the unique expression patterns, present
in the data, remained unrecognized. With increasing optimization
effort the curves became more similar until (forT = 100) they
exhibited a consistent pattern with respect to their indicative extrema
(Fig. 1) and only then an unequivocal interpretation was possible.
The computation effort,T , that was necessary for an unequivocal
interpretation depended on (1) the cluster validity index (Fig. 1,
T = 50; one index yielded estimates of 6 or 7, the other index a
unique estimate of 6), (2) the number of clusters, (3) the dataset
(result of the pre-investigation, not shown) and (4) other paramet-
ers, e.g., the strength of the FCM termination criteria and the fuzzy
exponentm. The subsequent results, obtained form = 1.5, proved
to be robust, i.e. choosingm = 2.0 yielded similar results.

The clear majority vote of the 42 validity indices suggested that
the data set has a coarse structure of two clusters, and a finer struc-
ture of six clusters. Thirty two indices had their global optimum at
C = 2. Twenty eight indices exhibited a clear extremum atC = 6,
being the global optimum for 6 and the first local optimum for 22 of
these indices. Because the 6-cluster partition appears to be biologic-
ally more meaningful than the 2-cluster partition, it was used in the
subsequent modeling study (Table 1, Fig. 2).

3.2 Selection of cluster-representative genes
Table 1 shows the selected genes. The required selection criteria met
perfectly with very high MSD(>0.95) and without missing data.
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Fig. 1. Array of cluster validity index vectors,V = {V1, . . . ,V10}, recorded afterT runs of the FCM algorithm, as a function of the number of clusters,C. The
ten curves are superimposed in each box. Left: Generalized Davis–Bouldin index (DBI) with the Hausdorff metric for measuring the distance between clusters,
and the average interpoint distance for measuring the cluster diameter (DBI scale: 0.8–1.1). Right: Generalized Dunn index (DI) with the average-to-centroid
distance between clusters and the points-to-centroid distance for the cluster diameter. (DI scale: 0.4–1.3). A minimum of the DBI and a maximum of theDI
are estimates in the number of clusters. More than one clear extremum indicates structure at different levels of resolution.

Table 1. NumberN of genes belonging to clusterc (c = 1, . . . ,C) with the
MSD >50% as well as the selected representative genes (MSD Symbol and
Function)

c N MSD Symbol Function

1 494 0.992 IL1A Interleukin 1, alpha
2 269 0.958 CD59 Antigen
3 97 0.989 NFKBIE Nuclear factor of kappa light polypeptide

gene enhancer in B-cells inhibitor, epsilon
4 67 0.999 STAT1 Signal transducer and activator of

transcription 1
5 137 0.995 STAT5A Signal transducer and activator of

transcription 5A
6 188 1.000 HLA-DMA Major histocompatibility complex II, DM

alpha

The cluster means and standard deviations are shown in Figure 2.

IL1A, NFKBIE, STAT1, STAT5A and HLA-DMA are known to be
involved in immune response after infection.

3.3 Dynamic modeling
Figure 3 shows the gene expression kinetics obtained from SVD-
based dynamic modeling according to Equation (1). The simulated
kinetics for the L2- and L1-fits are graphically indistinguishable. For
the L2-approach all of the 42 possible parameters, i.e. 36 gene–gene
interaction coefficientswi,j and 6 stimulus associated coefficientsbi ,
are present (fully connected network). The L1-fit according to Yeung
et al. (2002) reduces the number of non-vanishing model parameters
n to 31(mse= 1.512).

The optimized model structures obtained from the proposed Net-
work Generation Method configured with a maximum allowed
submodel error ofEmax = 1 and a maximum dynamic order of
Rmax = 1 andRmax = 3 are shown in Figures 4 and 5, respectively.
The number of non-zero parametersn was reduced to 14 and 15,
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Fig. 2. Result of the FCM clustering with six clusters: mean normalized gene expression profiles with standard deviation averaged over theN genes for the
respective cluster (Table 1).

respectively. Model (3) describes the structure of Figure 4 in detail.
(The variablesx1, . . . ,x6 are the log-ratios ofIL1, CD59, NFKBIE,
STAT1, STAT5A andHLA-DMA, respectively.)

dx1

dt
= −2.99· x1 − 14.8· u(t)

dx2

dt
= −2.41· x1 − 2.20· x2 + 14.9· u(t)

dx3

dt
= 4.43· x1 − 2.03· x3 − 21.5· u(t)

dx4

dt
= 2.15· x3 − 1.52· x4

dx5

dt
= 2.59· x4 + 2.31· u(t)

dx6

dt
= −1.02· x1 + 3.82· u(t)

(3)

The simulated kinetics are displayed in Figure 6. The mse was
0.6304 and 0.1710, respectively. The influence of two configuration
parameters, the maximum dynamic orderRmax and the maximum
allowed submodel errorEmax was investigated. ForRmax = 2, a
similar structure to that forRmax = 3 (Fig. 5) was obtained. However,
it contained only second order lag elements forCD59 andSTAT1
and had an error of mse= 0.2337. SettingEmax = 2 andRmax = 1
resulted in a structure that preserved the interrelations betweenIL1A,

NFKBIE andHLA-DMA in comparison with those shown in Figures 4
and 5 (n = 13; mse= 0.5250).

Randomly disturbed input data were used for a bootstrapping study
to assess the impact of measurement error and test the reliability of the
structures generated. The analyses were repeated 1000 times using
input data obtained by adding normal distributed random deviates
with a standard deviationσ . With Rmax = 1,Emax = 1 andσ = 0.1
the structure shown in Figure 4 was confirmed 961 times, i.e. in 96%
of the cases, except for the negative link fromIL1A to CD59 which
was found only 499 times. The exciting cascade from the infection
via IL1A to NFKBIE as well as the inhibitory link from infection to
NFKBIE was found to be the consensus structure for all 1000 runs
with σ = 0.1, 896 runs (90%) withσ = 0.5 and 645 times (65%)
with σ = 1.0.

4 DISCUSSION AND CONCLUSION
The current study proposes a systems biology approach to analyze
the dynamic behavior of the immune response to bacterial infection.
It demonstrates how to reconstruct the structure and dynamics of
a functional module of the immune system by analyzing stimulus–
response data from perturbation experiments and by using available
knowledge. The reverse engineering approach presented in this
paper combines clustering techniques with network inference. Sim-
ilar ideas have already been published (D’haeseleeret al., 2000;
Mjolsnesset al., 2000; Wahde and Hertz, 2000). However, both
methods were optimized in this work.
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Fig. 3. Measured and simulated expression kinetics (log-ratios) for the genes selected as representatives of the 6 clusters (Table 1). The simulated kinetics
(lines) were obtained from Equation (1) and SVD. mse= 1.512.

Fig. 4. Structure of the dynamic system described by Equation (3) for
the gene expressions of the representatives of clusters 1–6 generated by
the proposed Network Generation Method configured byRmax = 1 and
Emax = 1. The arrows represent stimuli or activations. The T-shaped links
(⊥) represent inhibitions. Grey boxes denote elements with non-zero (decay
or self-regulation) elementswi,i . The thick links indicate the connections
confirmed by bootstrapping.

The proposed algorithm was also applied to gene expression
time series with more time points, e.g. recordings of theE.coli
stress response during recombinant protein expression (Schmidt-
Hecket al., 2004). In the present study, we focused on an application

Fig. 5. Alternative structure of the dynamic system with third order time
lag elements forCD59 and STAT1 obtained from the proposed Network
Generation Methods configured byRmax = 3 andEmax = 1.

with few time points which is typical and most common in infection
biology research due to the high costs of microarrays.

The reverse engineering approach proposed in this paper consists
of four steps: (1) data pre-processing, (2) data clustering and cluster
validation, (3) selection of representative genes and (4) dynamic
modeling of the kinetic behavior of the cluster-representatives. The
aim of the first two steps is to reduce the number of variables (in
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Fig. 6. Measured and simulated expression kinetics for the genes selected as representatives of the six clusters. Simulations using optimised model structures
shown in Figures 4 (thick lines; mse= 0.6304) and 5 (thin lines, mse= 0.1710).

our example from 18432 to 6), i.e. to identify the main components
that represent the dynamic answer to the infection stimulus.

From a statistical learning perspective, clustering is subdivided
into (1) combinatorial algorithms, (2) mixture modeling and (3)
mode seeking (Hastieet al., 2001). No single tool has emerged as
the method of choice for gene expression analysis. We selected type
(1), because it is most widely applied. First, several algorithms were
tested on various simulated and gene expression data. Hierarchical
clustering, with 32 combinations of linkage method and distance
measure, provided highly inconsistent results. The ‘best’ cluster
trees, with the largest cophenetic coefficient, led to inappropriate
partitions. Prototype-based clustering together with validity indices
captured known (simulated) clustering structures more adequately.
Here, the best results of the fuzzy (FCM) analysis yielded stronger
evidence of the clusters than hard clustering based on a local or
global optimization scheme (Mölleret al., 2002). Self-organizing
maps (SOMs) depended on the map size, where a novel SOM val-
idation (Wu and Chow, 2004) often failed to estimate the number of
non-trivial simulated clusters.

The correct estimation of the number of clusters is a fundamental
issue. This number directly affects the inferred network model by
determining the number of network nodes. A wrong number of
clusters may thus lead to an inappropriate model and misleading bio-
logical conclusions. Therefore, the FCM result served as the input

for the proposed Network Generation Method. Advantages of util-
izing FCM have already been presented (Guthkeet al., 2000; Gasch
and Eisen, 2002).

One may view the above prototype-based clustering (PC) as an
alternative choice to the model-based clustering (MC) used, e.g. by
Mjolsnesset al. (2000). Whereas MC involves a statistical model
choice problem (Yeunget al., 2001), PC includes a parameter choice
problem. A novel solution is proposed here for the local optima
problem that occurs in both the MC and PC approaches. This solution
is a monitoring of the change in cluster validity measures depending
on the computational effort for solving the local optima problem.
Spurious random clusterings, due to a limited computational effort,
can be avoided. The novel approach relieves the user of a critical part
of the parameter choice problem, i.e. of a heuristic decision that is
difficult to make. This can be interpreted as one option to increase
the ‘accuracy’ of microarray data analysis (Vilo and Kivinen, 2001;
Campbell, 2003). The procedure offers room to further optimize the
calculations, e.g. for a particular dataset, number of clusters, and
algorithmic parameters (such as the fuzzy exponent). Nevertheless,
our type of multistep analysis is only one possibility. The choice of a
suitable cluster validity index is a problem with a long history which
has not yet been solved (cf. Pakhiraet al., 2004). Some indices
are correlated, because they quantify similar partition properties.
However, if the approach of relative cluster validity has become
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the method of choice, votes of different indices for the same value
tend to increase the confidence (cf. Bezdek and Pal, 1998). Other
techniques, including resampling (Dudoit and Fridlyand, 2002) and
bootstrapping (Hastieet al., 2001), are worth of being considered in
future studies.

The nodes of the gene regulatory network were selected from a
sorted list of genes ranked by the fuzzy MSD obtained from cluster
analysis (Table 1). Due to the currently limited knowledge about the
physiological function of genes and their translational products, this
selection is somewhat arbitrary and other genes may be considered as
well. For instance,IL6 as well asTNFα can be used as representatives
of cluster 1 instead ofIL1A. Similarly, STAT6 can be selected for
cluster 2, the CCAAT-box-binding protein for cluster 3, theMAP
kinase 4 for cluster 5 andCD31 for cluster 6. Cluster-representative
genes were selected from the fuzzy membership ranked gene list by
using the available expert knowledge. This can be supported by text
mining tools (Shatkay and Feldman, 2003; Chianget al., 2004), e.g.
by searching for known links between the infection stimulus and the
considered genes. The literature hit rate resulting from such searches
can be combined with (multiplied by) the fuzzy MSD obtained from
cluster analysis in order to obtain a ranking score for the cluster-
representative gene.

The network models obtained from the SVD procedure are not
optimal with respect to a low number of model parameters and
a low mse. The modeling results, and specifically the reconstruc-
ted network connectivities, strongly depend on the actual values
assumed for the time derivatives. However, due to the sparseness
of the gene expression data the time derivatives cannot be determ-
ined reliably. From a system identification point of view (Ljung,
1999), the SVD method realizes a prediction error identification
that leads to biased parameter estimates in the presence of meas-
urement noise. The proposed Network Generation Method, on the
other hand, realizes a model output identification and thus circum-
vents both drawbacks (i.e. the need for time derivates and the bias of
the estimated parameters).

Nevertheless, the solution of nonlinear optimization problems is
very time-consuming. The separation of the whole identification
problem into distinct subproblems significantly alleviates this prob-
lem, since each submodel parameter optimization involves a few
parameters only.

The solution according to Yeunget al. (2002) in which the rows
of the interaction matrix have the smallest possible city block(L1)

norm reduced the number of non-vanishing model parameters from
42 to 31 while leaving the time courses almost unchanged. The pro-
posed Network Generation Method, on the other hand, optimized the
model structure by minimizing the number of non-vanishing model
parameters as well as the mse. For the immune response problem
studied here the number of parameters was reduced from 42 to 14
(Fig. 4) and 15 (Fig. 5), i.e. by 67 and 64%, respectively. The mse
was reduced from 1.5 (Fig. 3) to 0.63 and 0.17 (Fig. 6), i.e. by 58
and 89%, respectively.

In the presented reverse engineering approach the inclusion of
available knowledge is possible through the selection of cluster-
representative genes (Table 1) and by the configuration of the
algorithm. Different configurations can generate different model
structures. The influence of two configuration parameters, the max-
imum dynamic orderRmaxand the maximum allowed submodel error
Emaxwas illustrated. The links found between the infection stimulus,
IL1A, NFKBIE andHLA-DMA were found to be stable for several

parameter valuesEmax andRmax. We usedRmax = 1 andEmax = 1
as default configuration.Rmax = 1 means starting with the simplest
model (first order lag element).Emax should be related to the experi-
mental noise.Emax = 1 means that a fold change>2 is considered to
be a significant change. In general, the complexity of the model and
the number of model parameters increase whenRmax is increased
andEmax is decreased.

Prior knowledge that concerns the existence or absence of either
gene–gene interactions or the influence of environmental factors
can be included in the proposed Network Generation Method by
pre-specification of initial submodel structures. The pre-defined
interactions or stimulus–response components are preserved by the
search strategy. For instance, the interactions between infection,
IL1A andNFKBIE highlighted in Figures 4 and 5 could be used as
advance information for further studies (data not shown). The cas-
cade from the infection stimulus viaIL1A toNFKBIE and the fact that
NFKBIE is primarily down-regulated by the infection was found as
a consensus structure for different configurations (Figs 4 and 5) and
bootstrapping and can therefore be considered to be highly probable.
This finding is corroborated by biological knowledge sinceNFKB
that is inhibited byNFKBIE is a transcription factor involved in
inflammatory immune response. The present results suggest the fol-
lowing response mechanism. The infection stimulates the expression
of NFKB dependent genes via pro-inflammatory cytokine effected
phosphorylation and subsequent degradation ofNFKB inhibitor pro-
teins (IkBs) such asNFKBIE (IL-1 signal transduction pathway).
In addition NFKBIE turns out to be transcriptionally suppressed
by the infection stimulus, thereby enhancing the transcription of
NFKB dependent genes such asIL-1. Evidently, IL-1 in turn induces
NFKBIE expression as a counter-regulation and thus limits its own
over-expression and that of otherNFKB dependent genes.

In order to ensure network model plausibility, a submodel is
required to have a non-zero, negative self-regulation parameterwi,i .
Positive self-regulation parameters lead to locally unstable sub-
models and are excluded by the method. However, self-regulation
parameters with zero value cannot be avoided, if a gene expres-
sion time series, such as forSTAT5A (x5) and HLA-DMA (x6),
has not yet reached a steady state during the measurement. Then,
any parameter optimization algorithm sets the corresponding self-
regulation parameterwi,i to ∼0 and, therefore, the applied search
strategy removes this parameter in the backward elimination mode
[i.e. w5,5 = w6,6 = 0 in Equation (3)]. Then, the reconstructed inter-
actions of the respective genes are less reliable than those estimated
for time series that have reached a steady state. Thus, the reconstruc-
tion of regulatory interactions concerningSTAT5A andHLA-DMA is
quite vague.

The simulated gene expression forNFKBIE and STAT1 reach
stationary values near the initial ones (log-ratios of 0.2 and 0.3,
respectively), whereas those ofIL1 and CD59 reach up-regulated
stationary values (log-ratios of 4.9 and 1.4, respectively). Thus,NFK-
BIE and STAT1 are down-regulated only temporarily, whereasIL1
andCD59 are permanently up-regulated during the infection.

The relaxation to a unique steady state is a general property of
stable linear differential equations with a constant external forcing.
Multiple steady states as observed for some biological systems are
caused by non-linearities. Non-linear terms can be included in the
proposed modeling algorithm when they are pre-defined from prior
knowledge. The automatic identification of additional non-linear
model terms in general requires more independent experimental
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data in order to ensure a stable convergence of the algorithm to
a unique model structure. Due to the wide range of expression
values logarithmized data are preferred for analysis. Modeling the
non-logarithmized data instead of the log-ratios confirmed the three
links between ‘infection’,IL1 andNFKBIE shown as thick lines in
Figure 4.

The proposed Network Generation Method identifies differen-
tial equation systems from measured time courses and available
knowledge directly. Thus, it suggests qualitative biological rela-
tions between the considered genes. This data- and knowledge-driven
modeling allows to generate models that represent alternative hypo-
theses for the underlying gene regulatory network. Incorporating
information about the measurement error (in terms of the maximum
allowed submodel errorEmax) and the available biological know-
ledge on immune response can help to select plausible network
structures. Given alternative network structures (differing e.g. in
whether STAT1 is activated by NFKBIE as shown in Figure 4 or
inhibited by CD59 as shown in Fig. 5) the corresponding dynamic
models can be used to design suitable perturbation experiments
aimed at an optimal discrimination between these structures (Ideker
et al., 2000). Having in mind the large number of expressed genes,
the sparseness of genetic networks and the limitations of today’s bio-
logical knowledge, the present study has shown that the concerted
application of optimized clustering methods, data- and knowledge-
driven reverse engineering and experimental planning is a viable and
promising approach to enlighten the jungle of biochemical networks.
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